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We present a study of the drag reduction induced by rigid fibres in a turbulent
channel flow using direct numerical simulation. The extra stresses due to the fibres
are calculated with the well-known constitutive equation involving the moments of the
orientation vector. Drag reductions of up to 26% are calculated, with the largest drag
reductions observed using non-Brownian fibres and semi-dilute concentrations. These
findings suggest that elasticity is not necessary to achieve turbulent drag reduction.
Flow statistics show trends similar to those observed in simulation of polymeric drag
reduction: Reynolds stresses are reduced, velocity fluctuations in the wall-normal
and spanwise directions are reduced while streamwise fluctuations are increased, and
streamwise vorticity is reduced. We observe strong correlations between the fibre
stresses and inter-vortex extensional flow regions. Based on these correlations and
instantaneous visualizations of the flow field, we propose a mechanism for turbulent
drag reduction by rigid fibre additives.

1. Introduction
The reduction of turbulent drag has been observed experimentally in suspensions in-

volving a wide array of materials; these include paper and cloth pulp (Robertson &
Mason 1957; Radin, Zakin & Patterson 1975), asbestos (McComb & Chan 1985),
colloidal crystals (Pirih & Swanson 1972; Radin et al. 1975), and chopped nylon (Lee,
Vaseleski & Metzner 1974). Some of these materials, such as short nylon fibres and
colloidal crystals, can be considered to be rigid rods to an excellent approximation.
Additionally, Sasaki (1991) observed drag reduction using dilute solutions of xanthan
gum and schizophyllum polysaccharide molecules having lengths comparable to their
persistence lengths. Under these conditions, these polymers can also be modelled
as rigid rods. These additives have not been as extensively investigated as flexible
polymers since they typically yield low drag reductions or require larger concentrations
to achieve the same drag reductions as those obtained with flexible polymer additives.

However, fibrous additives are more resistant to shear degradation than flexible
polymers. This robustness has led investigators to consider mixtures of fibres and
polymers in an attempt to develop an additive blend that is more shear-resistant
than flexible polymers alone. These mixtures not only exhibit greater shear resistance,
but also dramatically improved drag reduction properties. Lee et al. (1974) were the
first to observe a synergistic effect where drag reductions using mixtures of polymer
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and fibres exceeded the sum of the drag reductions using either additive alone. This
synergistic effect was observed using both flexible asbestos and rigid nylon fibres.
They also were able to exceed the maximum drag reduction asymptote of Virk,
Mickley & Smith (1970). This effect was also observed by other investigators using
both polymer–fibre mixtures (Malhotra, Deshmukh & Singh 1987) and mixtures of
rigid and flexible polymers (Dingilian & Ruckenstein 1974; Reddy & Singh 1985).
This synergy led Metzner (Kale & Metzner 1976; Metzner 1977) to speculate that
fibres and polymers reduced turbulent drag by different mechanisms and that the
action of fibres was related to extensional resistance in near-wall turbulent structures,
which were poorly characterized at that time.

Our knowledge of near-wall turbulence and its relation to drag has been
considerably enhanced in the last decade via direct numerical simulation. Kravchenko,
Choi & Moin (1993) quantitatively demonstrated that skin friction was associated
with near-wall vortex structures, with regions of high skin friction on the wall
associated with downwash of high-speed fluid. Jimenez & Pinelli (1999) demonstrated
that downwash of high-speed fluid due to these near-wall vortex structures is also
associated with the formation of alternating high- and low-speed streaky structures
between the wall and y+ � 10. Jimenez & Pinelli (1999) also showed that near-wall
turbulence is self-sustaining: the streaks are unstable and act to generate vortices,
which in turn advect high-speed fluid towards the wall generating the streaks.
Turbulent drag can be reduced by disrupting either part of this cycle, as demonstrated
in the numerical studies of vortex disruption using localized suction and blowing by
Choi, Moin & Kim (1994) and streak disruption via application of a transverse body
force by Lee & Kim (2002).

Numerical simulation has provided new understanding of the origins of drag
reduction by polymer additives. Using constitutive models for the polymer stress,
Sureshkumar, Beris & Handler (1997) and Dimitropoulos, Sureshkumar & Beris
(1998) were able to obtain numerical simulations of polymer-induced drag reduction
that were in qualitative agreement with experiments. Recent numerical simulations at
Stanford (Terrapon et al. 2004; Dubief 2002; Dubief et al. 2003, 2004) have shown
correlations between polymer stretch and near-wall coherent structures. However,
with the exception of the preliminary work of den Toonder et al. (1997), there are
no similar investigations of the mechanisms for drag reduction using constitutive
relations for rigid fibrous or rodlike polymeric additives.

There have been several simulations of fibre flows in turbulent channel flow (Fan &
Ahmadi 2000; Zhang et al. 2001), but these simulations are typically focused on
aerosol deposition in gas flows and do not include the coupling of the fibre stresses
to the fluid momentum calculation. There have also been numerical and experimental
investigations of the interaction of spherical particles with turbulent gas and liquid
flows (e.g. Li et al. 2001; Ahmed & Elgobashi 2000; Kulick, Fessler & Eaton
1994). These studies demonstrate that the presence of particles can substantially
modify the flow field, with a strong size effect: small particles (≈ 1 × 10−7 m) reduce
turbulence intensity while large particles (≈ 1 × 10−3 m) increase turbulence. Non-
spherical particles would be expected to generate strongly anisotropic stresses not
observed using spheres and for sufficiently small particles, the elastic stresses due to
Brownian rotations could also be significant.

There have been several attempts to investigate the importance of these elastic
stresses on fibre-induced drag reduction using simplified simulations. Den Toonder
et al. (1997) investigated the relative importance of anisotropic stress and elasticity
on drag reduction in polymeric solutions. To investigate the former, they performed
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direct numerical simulations of a turbulent pipe flow using the non-Brownian rigid
rod constitutive equation, but because of computational limitations, they used the
simplifying assumption that the local fibre orientation was the local velocity vector.
This fully aligned fibre assumption is questionable for a rapidly time-varying turbulent
flow. Azaiez (2000) has demonstrated that stabilization of a free shear flow using
fibrous additives is actually related to deviations from full alignment. Despite the local
alignment assumption, den Toonder et al. (1997) were able to simulate modest drag
reductions and obtain flow statistics that qualitatively agreed with experimental data
for polymeric drag reduction. Using an ad hoc elasticity model, they also demonstrated
that elasticity apparently decreased drag reduction, but the authors did not provide an
explanation for this effect. Manhart (2003) performed uncoupled Lagrangian simu-
lations of Brownian spheroids in a turbulent channel flow and found that increasing
the elasticity increased the average stress values, but decreased the fluctuations of
the extra stress, which were conjectured to be related to drag reduction. The lack of
coupling to the flow calculation in the study by Manhart (2003) limits the insight
obtainable from these results as the modification of the turbulent flow structures by
the particles would be expected to have a significant impact on the particle dynamics
and thus the mechanisms of drag reduction.

For the case of flexible polymer additives, Beris and coworkers (Sureshkumar
et al. 1997; Dimitropoulos et al. 1998, 2001; Beris & Dimitropoulos 1999) obtained
considerable insight into both the origins of the drag reduction effect and the role
of additive elasticity. They showed a strong correlation between the extensional
viscosity enhancement due to the additives and the weakening of the near-wall
turbulence structures using a variety of statistical measures. Their work supports the
elongational resistance hypothesis of Lumley (1969) and Seyer & Metzner (1969),
both of whom speculated that drag reduction occurs when polymers undergo a coil–
stretch transition, giving rise to large resistances to extensional flows associated with
near-wall vortex structures. They found that the critical Weissenberg number, or the
ratio of the polymer relaxation to characteristic flow time scales, must be of order 10
for drag reduction to occur. This result would suggest that the additive must possess
some finite amount of elasticity (i.e. a non-zero relaxation time) in order for drag
reduction to occur. An alternative argument for the necessity of additive elasticity was
made by Tabor & deGennes (1986), who claimed that drag reduction is associated
with the storage of elastic energy in the polymer molecules and the resulting disruption
of the energy cascade. Joseph (1990) and Sreenivasan & White (2000) present
theoretical arguments in favour of the elastic theory of Tabor & deGennes (1986).
The experimental work of Sasaki (1991) using xanthan gum showed that increasing
polymer flexibility, and thus increasing the elasticity, increases drag reduction
effectiveness.

However, experimental studies (Lee et al. 1974; Radin et al. 1975) have shown that
macroscopic, non-Brownian fibres (that have no elasticity) are capable of reducing
drag in turbulent flows. These results would suggest that additive elasticity is not
a requirement for drag reduction behaviour at all. Direct numerical simulations of
Brownian rigid fibres and their action in turbulent flow allow the investigation of the
role of elasticity through variation of the orientational diffusivity or in dimensionless
terms, the rotary Péclet number, in a physically meaningful manner that is not possible
using flexible polymer models. Determining the importance of additive elasticity on
drag-reduction performance is one of the primary motivations of the present work.

In this paper, we present a systematic numerical investigation of drag reduction in
a turbulent channel flow using rigid fibrous additives. We have studied suspensions
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of rigid particles from dilute to semi-dilute concentrations and over a range of rotary
Péclet number. In § 2, we discuss the constitutive equations for Brownian rigid fibres
and the approximations we use in solving them. Details of the numerical methods
used, including a study of box size and grid resolution, are presented in § 3. In § 4,
turbulence statistics and structure for a representative drag-reduced flow are presented.
A mechanism for drag reduction using rigid fibrous additives is presented in § 5. An
examination of the effects of the closure approximation and the variation of the
rheological parameters on drag-reduction effectiveness is presented in § 6 and followed
by a summary in § 7.

2. Problem formulation
2.1. Governing equations

The flow is described with Cauchy’s equations of motion for an incompressible fluid,
and using indicial notation we have:

∂ui

∂xi

= 0, (2.1)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −∂P

∂xi

+
∂τij

∂xj

, (2.2)

where ρ is the fluid density and P is the pressure. The stress tensor is decomposed
into the Newtonian and fibre contributions such that:

τ = τN + τF = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ τF . (2.3)

To describe the fibre contribution to the extra stress, we relate the stress to a
description of the suspension microstructure.

2.2. Constitutive equations

We consider fibres that are rigid neutrally buoyant bodies of revolution with a length
l, half-length L and characteristic (maximum) diameter D suspended in a Newtonian
incompressible liquid. The orientation of the fibres is denoted using a unit vector pi

and the aspect ratio of the particle is defined as re = l/D. The orientational diffusivity
due to Brownian rotation is denoted by d. The concentration of the fibres is defined
using the volume fraction φ or the concentration parameter nL3, where n is the
number density of particles. We begin by assuming that the suspension is dilute,
or that nL3 < 1, but will also consider the semidilute case of 1 <nL3 � re in the
development of our model.

We assume that all inertial effects on the scale of the particle are negligible. One
estimate of the particle Reynolds or Stokes number can be made using the magnitude
of the velocity fluctuations; using a value of 0.1Uc and a particle length of ≈ 1 cm,
we estimate the particle Reynolds number to be ≈ 2000 for the nylon fibres used
by Lee et al. (1974). For this large particle Reynolds number, the negligible inertia
assumption is clearly invalid and we expect that our model will not accurately
capture the behaviour of such a system. Investigations into particle inertia show
that the rotational dynamics of the particle can be substantially affected. Feng &
Joseph (1995) showed that adding unsteady inertia terms to the fibre orientation
evaluation and fluid flow equations tended to suppress Jeffrey orbits in Poiseuille
flow. Using lattice-Boltzmann simulations, Qi & Luo (2002) showed that as the
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particle Reynolds number is increased, the dynamics change from Jeffrey orbits
to log-rolling with the long axis parallel to the vorticity vector. Additionally, as
discussed in the review of inertial suspensions by Koch & Hill (2001), finite particle
inertia causes particles to both experience an additional lift force and accumulate in
low-vorticity regions. In these regions they clump densely, such that lubrication forces
between particles should also be considered. None of these effects is considered in our
analysis.

We also assume that the fibre length is much smaller than all scales of the turbulent
flow. This assumption is poor for comparison to experiments with macroscopic fibres:
for the turbulent pipe flow of Lee et al. (1974), we estimate the viscous length to be
approximately 1 × 10−4 m, while the nylon fibres of interest had an average length of
≈ 1 cm. In order to account for non-homogeneous flow fields on the scale of the fibre,
it will be necessary to use a non-local formulation of the fibre rheology as derived
by Schiek & Shaqfeh (1995). This formulation requires explicit solution of the fibre
orientation distribution function and was not used in our study.

For rigid biomolecules such as those used by Sasaki (1991), the viscous length is
2 to 3 orders of magnitude greater than the length of the molecule. Using a contour
length of 1 × 10−6 m and the characteristic velocity reported in Lee et al. (1974), we
obtain a particle Reynolds number of 0.2. For these additives, particle inertia and
non-local effects are negligible. The analysis we present here is therefore strictly only
valid for very small rodlike objects such as rigid biopolymers or microscopic colloidal
particles.

With the aforementioned assumptions, the evolution of the orientation of a
single fibre (ṗi) is described by Jeffrey’s equation, and the Fokker–Planck equation
describes the conservation of probability of orientation, Ψ ( p, x, t), where we have
neglected centre of mass diffusion and assumed spatial homogeneity of the centres of
mass:

ṗi = Ωijpj + β(Eijpj − pipjEjkpk), (2.4)

DΨ

Dt
+

∂(ṗiΨ )

∂pi

= d
∂2Ψ

∂pk∂pk

, (2.5)

where:

Ωij =
1

2

(
∂uj

∂xi

− ∂ui

∂xj

)
, (2.6)

Eij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
. (2.7)

In (2.5), ∂/∂pi denotes the gradient in orientation space (Advani & Tucker 1987).
It is possible to solve the Fokker–Planck equation for the orientation distribution

function directly and then calculate the necessary moments of fibre orientation
to obtain the extra stress in either a completely Eulerian or coupled Eulerian–
Lagrangian framework (e.g. Nayak 1998; Suen, Joo & Armstrong 2002). Because of
the computational expense in either direct integration of the Fokker–Planck equation
for the fibre orientation or the implementation of the ‘double Lagrangian’ method
(Szeri & Leal 1994) in combination with the large number of particle trajectories
required to obtain values of stress at any point in the flow field, we have chosen
not to use this method. Instead, we use the orientation tensor formulation and solve
for the second moment of pi . This method is analogous to the solution for the
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conformation tensor with the FENE or FENE-P models used in simulations of drag
reductions with polymers (Sureshkumar et al. 1997).

The second and fourth moments of the orientation vector pi are defined as (Hinch &
Leal 1976): ∫

pipjΨ d p = 〈pp〉 = aij , (2.8)∫
pipjpkplΨ d p = 〈pppp〉 = aijkl . (2.9)

The evolution equation for the second moment as derived from (2.5) is given by
Hinch & Leal (1976), in which Eij is twice the value in (2.7):

Daij

Dt
= aik

∂uj

∂xk

+ akj

∂ui

∂xk

+
β − 1

2
(Eikakj + aikEkj ) − βEklaijkl + 2d(δij − 3aij ). (2.10)

The parameter β is defined as:

β =

(
r2
e − 1

)(
r2
e + 1

) . (2.11)

Equation (2.10) contains the fourth moment aijkl . The evolution equation for any
moment will contain terms proportional to the next higher moments (Advani &
Tucker 1987). In order to close the set of equations at this order of approximation, a
closure approximation relating aijkl to aij is required.

We have considered two closures in this work. The first is the three-dimensional
hybrid closure of Advani & Tucker (1990), which is a weighted average of the linear
(equation (2.14)) and quadratic (first term in equation (2.12)) closures. This closure
has been shown to be more accurate than either the linear or quadratic closures in
simple flows, while maintaining the stable and physical dynamic behaviour of the
latter. The hybrid closure has the general form:

aijkl = f aijakl + (1 − f )bijkl . (2.12)

For the three-dimensional problem, the forms of f and bijkl are:

f = 1 − 27 det(aij ), (2.13)

bijkl = − 1
35

(δij δkl + δikδjl + δilδjk) + 1
7
(aij δkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil).

(2.14)

However, compared to more sophisticated closures, the hybrid closure has been
shown to overpredict both the rate and degree of fibre alignment in simple flows
(Chung & Kwon 2001), which would be expected to affect the stresses and resulting
flow dynamics. For this reason, we have also considered the invariant-based optimal
fitting (IBOF) closure of Chung & Kwon (2002), which is arguably the best closure
available at present. This closure exhibits the nearly exact correspondence to explicit
solutions of the Fokker–Planck equation predicted using eigenvalue-based fitting
schemes such as the orthotropic weighted closure of Cintra & Tucker (1995) in simple
shear, extension, and mixed flows, but does not exhibit the oscillatory behaviour of
these methods at high rotary Péclet number. Chung & Kwon (2002) have also shown
the IBOF closure has significantly less computational cost than the eigenvalue-based
methods.
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The IBOF closure expresses the symmetric fourth-order tensor aijkl as an expansion
in the second-order tensor aij and the identity tensor δij as derived using the Cayley–
Hamilton theorem:

aijkl = β1S(δij δkl) + β2S(δij akl) + β3S(aijakl) + β4S(δijakmaml)

+ β5S(aijakmaml) + β6S(aimamjaknanl), (2.15)

where the operator S denotes the symmetric part of the argument:

S(Tijkl) = 1
24

[Tijkl + Tjikl + Tijlk + Tjilk + Tklij + Tlkij + Tklji + Tlkji + Tikjl + Tkij l

+ Tjlik + Tljik + Tjlki + Tljki + Tiljk + Tlijk + Tilkj + Tlikj + Tjkil + Tkjil

+ Tjkli + Tkjli + Tiklj + Tkilj ]. (2.16)

The IBOF closure assumes that the coefficients β1 to β6 are functions of the second
and third invariants of the tensor aij . These invariants are the square and determinant
of aij , and are denoted as II and III, respectively. Chung & Kwon (2002) derived
analytical expressions for three of the βi values and used fifth-order polynomial
fittings in terms of the invariants for the remaining three:

β1 = 3
5

[
− 1

7
+ 1

5
β3

(
1
7

+ 4
7
II + 8

3
III

)
− β4

(
1
5

− 8
15

II − 14
15

III
)

− β6

(
1
35

− 24
105

III − 4
35

II + 16
15

II(III) + 8
35

II2
)]

, (2.17)

β2 = 6
7

[
1 − 1

5
β3(1 + 4II) + 7

5
β4

(
1
6

− II
)

− β6

(
− 1

5
+ 2

3
III + 4

5
II − 8

5
II2

)]
, (2.18)

β5 = − 4
5
β3 − 7

5
β4 − 6

5
β6

(
1 − 4

3
II

)
; (2.19)

while β3,4,6 are obtained using:

βi = a(i, 1) + a(i, 2)II + a(i, 3)II2 + a(i, 4)III + a(i, 5)III2 + a(i, 6)(II)(III)

+ a(i, 7)II2III + a(i, 8)(II)(III)2 + a(i, 9)II3 + a(i, 10)III3 + a(i, 11)II3III

+ a(i, 12)II2III2 + a(i, 13)(II)III3 + a(i, 14)II4 + a(i, 15)III4 + a(i, 16)II4III

+ a(i, 17)II3III2 + a(i, 18)II2III3 + a(i, 19)(II)III4 + a(i, 20)II5

+ a(i, 21)III5 (i = 3, 4, 6). (2.20)

The 21 fitting coefficients for each of these three βi values were obtained by using
a least-squares fitting to the exact solutions of the Fokker–Planck equation in a
variety of simple flows. The values of the fitting coefficients are provided in an
appendix to Chung & Kwon (2002). We compare the results obtained using this
more accurate but computationally expensive closure with those obtained with the
hybrid closure in § 6. We have observed that the IBOF closure is significantly more
computationally expensive than the hybrid closure, and as a result, we have chosen
to use the hybrid closure to determine the appropriate simulation parameters and
to investigate the effect of varying the suspension rheological properties. We have
used the more accurate IBOF closure to calculate the drag-reduced flow statistics
presented in § 4 and mechanisms of drag reduction in § 5.

2.3. Stress tensor

The divergence of the extra stress due to the fibres is used to couple the effect of
the fibres into the flow simulation. We consider the viscous and elastic contributions
to the stress tensor separately. To calculate the exact extra stress, we now must limit
ourselves to a specific particle shape and we choose prolate spheroids.
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Hinch & Leal (1975, 1976) obtained the viscous stress tensor for spheroids:

τ visc
ij = 2µφ(2AElkaijkl + 2B(Eikakj + aikEkj ) + CEij ), (2.21)

where φ is the volume fraction, µ is the solvent viscosity, and A, B and C are functions
of the aspect ratio and are given for the limit re → ∞ in Hinch & Leal (1972). These
functions are:

A =
r2
e

4
(
ln(2re) − 3

2

) , (2.22)

B =
3 ln(2re) − 11

2

r2
e

, (2.23)

C = 2. (2.24)

In the case of Brownian fibres, there is an elastic stress associated with the
orientational diffusivity. Hinch & Leal (1972, 1976) derived the stress tensor, which
is only a function of the second moment of the orientation vector aij :

τ elas
ij = µφFdaij . (2.25)

They also derived the shape factor F for a spheroid in the limit of large aspect ratio:

F =
3r2

e

ln(2re) − 1
2

. (2.26)

The resulting form of the stress tensor used in our calculations is then given by:

τ
f
ij = 2µφ(2AElkaijkl + 2B(Eikakj + Ekjaik) + CEij + Fdaij ). (2.27)

As shown by Kim & Karrila (1991), the asymptotic forms of the shape factors are
accurate for aspect ratios greater than 10.

2.4. Semi-dilute concentration model

The effect of increasing the concentration from the dilute to the semi-dilute regime on
the dynamics described by Jeffrey’s equation and on the fibre extra stress is a strong
function of the rotary Péclet number, Pe= γ̇ /d , where γ̇ is the characteristic shear or
strain rate and d is the rotary diffusivity. If the Péclet number is small (O(1)), then the
suspension is strongly Brownian and the resulting dynamics and stresses are described
using the reptation model of Doi & Edwards (1986). We have not considered this
model here.

In the non-Brownian limit (Pe → ∞), the modifications to the dynamics and stress
are far more modest. As shown by Koch & Shaqfeh (1990), the corrections to Jeffrey’s
equation in the semi-dilute regime due to fibre–fibre interactions are small (of order
γ̇ / ln(1/φ)) and can be neglected to a first approximation. An alternative formulation
for the case of semi-dilute non-Brownian fibres is the ‘effective rotary diffusivity’
of Folgar & Tucker (1984) in which d = Cγ̇ where C is an empirical interaction
coefficient. Shaqfeh & Koch (1990) and Rahnama, Koch & Shaqfeh (1995) have
shown that the effect of hydrodynamic interactions on this effective diffusivity in the
semi-dilute regime is small. The most accurate estimation of this interaction coefficient
has been derived using a rigorous analysis of hydrodynamic interactions by Koch
(1995). Koch (1995) demonstrated that the resulting effective diffusivity should be an
anisotropic tensor; as discussed in Larson (1999), the magnitude of the corresponding
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interaction coefficient can be estimated using C ≈ 7.5 × 10−4nL3/re ln2 re. Using this
expression with re = 100 and nL3 = 18 gives an effective rotary Péclet number due to
hydrodynamic interactions of approximately 100 000. Based on this estimate, we have
neglected the effects of fibre–fibre interactions on the fibre rotational dynamics in the
case of non-Brownian semi-dilute suspensions.

The stress tensor for non-Brownian semi-dilute suspensions is defined using the
resistivity derived by Shaqfeh & Frederickson (1990), which rigorously accounts for
many-body interactions:

τ
f
ij = 2µφ(2AElkaijkl), (2.28)

where A is given by:

A =
r2
e

4(ln(1/φ) + ln(ln(1/φ)) + 1.439)
. (2.29)

In the limit of large aspect ratio, the dilute stress scaling is dominated by the term
proportional to A. The difference between the values of the shape factor A for high
aspect ratio particles using the dilute and semi-dilute models is small, with the ratio
of the values equal to 1.35 for re = 100 and φ = 0.015.

2.5. Non-dimensional form of the governing equations

The governing equations are scaled using the centreline velocity Uc for velocity, the
channel half-width h for length, the ratio h/Uc for time, ρ(Uc)

2 for pressure, and
(µUc)/h for particle stress. The evolution of the fibre orientation moment tensor is
given by:

Daij

Dt
= aik

∂uj

∂xk

+ akj

∂ui

∂xk

+
β − 1

2
(Eikakj + aikEkj ) − βEklaijkl +

6

Pe

(
δij

3
− aij

)
, (2.30)

where Eij is twice the value in (2.7). The momentum equations with the fibre extra
stress included are:

∂ui

∂t
+ uj

∂ui

∂xj

= −∂P

∂xi

+
1

Re

∂2ui

∂xj∂xj

+
∂τ

f
ij

∂xj

, (2.31)

or using the definition of the fibre stress tensor:

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂P

∂xi

+
1 + 2φ

Re

∂2ui

∂xj∂xj

+
2φ

Re

∂

∂xj

[2AElkaijkl + 2B(Eikakj + Ekjaik)] +
2Fφ

Re Pe

∂aij

∂xj

, (2.32)

in which the definition of the rate of strain tensor in (2.7) has been used.
In the equations above, the fourth moment aijkl is defined using either the IBOF

or hybrid closure approximations as described in (2.15)–(2.20) or (2.12), respectively.
The term ∂τ

f
ij /∂xj in (2.31) can be considered to be an additional body force due to

the presence of the fibres. Note that the choice of the Newtonian viscosity for stress
scaling means that an effective viscosity based on the suspension viscosity at the wall
will be used in the definition of the turbulence viscous scaling. In this formulation,
several fibre parameters need to be specified in addition to those required for the
Newtonian case: the fibre aspect ratio re and the volume fraction φ, which can
be related to the concentration parameter nL3 by φ =(4πnL3)/(3r2

e ) for the prolate
spheroids considered here. For Brownian fibres, the rotary Péclet number Pe=Uc/dh
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is specified and describes the strength of Brownian randomizations of orientation
relative to a shear rate based on the centreline velocity and channel half-width. For
the case of non-Brownian fibres, the terms proportional to Pe−1 are set equal to
zero.

3. Numerical formulation
The flow solver used to perform the simulations presented here is based on a

finite-difference channel-flow code that has been used for polymer drag reduction
studies conducted at Stanford (Dubief 2002; Dubief et al. 2004). The computational
domain is periodic in the streamwise and spanwise directions. Flow through the
channel is maintained at a constant mass flow rate, such that drag reductions result
in a pressure drop along the length of the channel. We first present details of
the derivative formulation and solution algorithm, then discuss the selection of the
simulation domain size and resolution.

3.1. Spatial derivatives

The flow solver uses energy-conserving second-order differences applied on a staggered
grid. The fibre quantities aij and τ

f
ij are discretized at the cell centres (pressure nodes)

using a fourth-order compact scheme as described by Min, Yoo & Choi (2001)
in order to resolve better the small spatial scales associated with these terms. The
advection terms of (2.30) are discretized using a third-order compact upwind scheme
(Dubief et al. 2004a). This scheme is defined using an upwinding coefficient:

ε = 1
2
(s− + s+), (3.1)

where s− and s+ are the sign of the velocity at the interface of the cell, the compact
scheme is written as:

(2 + 3ε)φ′
i−1 + 8φ′

i + (2 − 3ε)φ′
i+1 =

6

�
[(−1 − ε)φi−1 + 2εφi + (1 − ε)φi+1]. (3.2)

Using this scheme, dispersion occurs at smaller scales than for the centred finite-
difference scheme. The upwinding introduces numerical dissipation at small scales
that stabilizes the solution of (2.30). However, as discussed by Min et al. (2001), an
extra local dissipation is added wherever the tensor aij is not positive semi-definite,
i.e. when det(aij ) < 0. The local dissipation is implemented using:

∂aij

∂xk

=
δuaij

δxk

+




0 if det(aij ) � 0,

κ�2
k

δ2
2aij

δ2xk

if det(aij ) < 0.
(3.3)

The operators δu and δ2 are the upwind-compact and second-order central
differentiation schemes, respectively, �k is the grid spacing in the xk-directions, and κ

is a constant set equal to 10. The selection of this constant is discussed in Dubief et al.
(2004a) as well as in § 3.3.3, in which we examine the sensitivity of the results to the
magnitude of this coefficient.

3.2. Time-stepping technique

The numerical method used to solve (2.32) is based on a semi-implicit fractional-
step method (Le & Moin 1991). The Newtonian viscous stress in the wall-normal
direction is advanced in time with the Crank–Nicolson scheme, while all other terms in
(2.30) and (2.32) are advanced with a third-order Runge–Kutta (RK3) method. After



Simulation of drag reduction using rigid fibres 291

solving (2.30) at time (l), the resulting algorithm is

u
(∗)
i − u

(l−1)
i

�t
= −γlN

(l−1)
i − ζlN

(l−2)
i + αl

(
L

(l)
i + L

(l−1)
i + T

(l)
i + T

(l−1)
i

)
, (3.4)

∂k∂kφ =
1

αl�t
∂ku

(∗)
k , (3.5)

u
(l)
i = u

(∗)
i − αl�t∂iφ. (3.6)

In (3.4), u
(∗)
i are the intermediate velocity components not satisfying the continuity

equation, φ is the first-order approximation to the pressure, and N , L and T represent
finite-difference approximations (using the methods described in the previous section)
to the viscous, convective and fibre stress terms, respectively:

Ni =
δ

δxk

uiuk, (3.7)

Li =
1

Re

δ2

δxkδxk

ui, (3.8)

Ti =
1

Re

δ

δxk

τ
f
ik. (3.9)

The index l denotes the RK3 substep and γl , ζl and αl are the corresponding
coefficients:

γ1 = 8
15

; ζ1 = 0; α1 = 4
15

;

γ2 = 5
12

; ζ2 = − 17
60

; α2 = 1
15

;

γ3 = 3
4
; ζ3 = − 5

12
; α3 = 1

6
.

Initial numerical results showed that the use of a fully explicit scheme for the time
stepping of (2.30) is unstable for large values of Pe. For this reason, we implemented an
implicit algorithm for time advancement of the orientation tensor evolution equation.
The orientation tensor is iteratively solved using a trapezoid rule formulation at each
velocity substep. We found that at large values of Péclet number, fibres would take on
strongly anisotropic orientations with values of a single trace component approaching
unity (complete alignment along a single axis) or zero (complete alignment in a
plane). Using an explicit algorithm, it was possible for the fibres to ‘overshoot’ the full
alignment condition, resulting in loss of positive definiteness. To correct this problem,
negative values of the trace components of the orientation tensor were clipped, and
then the corrected values were used for additional iterations, ensuring that the off-
diagonal values were also corrected. These clipping corrections were typically less
than 0.1% of the value of the orientation tensor.

Following the same numerical scheme as for the momentum equations (2.32), the
time advancement of (2.30) is

a
(l)
ij − a

(l−1)
ij

�t
= αl

(
R

(l)
ij + R

(l−1)
ij

)
, (3.10)

where,

R
(l)
ij = − u

(l−1)
k ∂ka

(l)
ij + a

(l)
ik ∂ku

(l−1)
j + a

(l)
kj ∂ku

(l−1)
i +

β − 1

2

(
E

(l−1)
ik a

(l)
kj + a

(l)
ik E

(l−1)
kj

)
− βa

(l)
ijklE

(l−1)
kl +

6

Pe

(
δij

3
− a

(l)
ij

)
(3.11)
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Mesh �+
x �+

y �+
z

64 × 129 × 32 15 0.325 → 5.9 9.0
64 × 129 × 64 15 0.325 → 5.9 4.5
80 × 141 × 80 12.5 0.3 → 5.4 3.75
96 × 151 × 96 10 0.27 → 10 3.1

Table 1. Summary of meshes considered for grid resolution study. Spacings are based on
viscous length of Newtonian turbulent flow.
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Figure 1. Power spectra in (a) x and (b) z of fibre stress τ12 as a function of mesh resolution.
Spectra of velocity are also shown for the spanwise case. Spectra are normalized by their
respective variances.

and
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(
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3
− a

(l−1)
ij

)
. (3.12)

3.3. Grid resolution and domain size

We have performed both mesh refinement and box size studies. For both of these
studies, the starting flow field is a Newtonian turbulent flow with a Reynolds number
of 7500 based on the centreline velocity and channel half-width. The effect of the
fibre stresses are included in the flow solution. We have considered fibres with an
aspect ratio of 100 and nL3 = 18. For the grid resolution study, a ‘minimal channel’
(Jimenez & Moin 1991) of dimensions πh × 2h × h was used with grid resolutions
described in table 1. We considered three meshes of increasing resolution in all
dimensions as well as one coarse mesh for potential use in exploring the effect of
rheological parameters. For the box size study, we have considered a minimal channel
with resolution 64 × 129 × 64 and a double minimal channel in the x and z dimensions
with resolution 128 × 129 × 128. For the Newtonian flow, h+ = 300.

3.3.1. Grid resolution

The power spectra of the fibre shear stress in the streamwise and spanwise directions
are shown in figure 1. We obtain approximately two decades of decay for the fibre
stress τ12, which is adequate, but not nearly as good as that for the velocity. The
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Figure 2. Effect of mesh resolution on (a) r.m.s. velocity fluctuations and (b) mean
fibre stresses.

other fibre stress components have similar behaviour with the most slowly decaying
component, τ22, having approximately one-half decade less decay. The improvement
in spectral decays going from the medium to the fine mesh is modest in both the x-
and z-directions.

The slow decay of the stress components, even for the finest meshes investigated,
indicate that the smallest scales of the fibre stresses are not well resolved. This
behaviour is a result of the character of the orientation tensor evolution equation
(2.30) and the structure of near-wall turbulence. The evolution equation for the
orientation tensor aij contains no diffusive terms and the only term containing a
spatial derivative of aij is the advection term. If we consider the evolution of the
suspension structure in near-wall turbulence, near-wall vortices contain regions of
sharp variation in velocity gradient, ranging from pure rotation at the vortex core
to extensional flow between vortices. These strong spatial gradients in flow combined
with the lack of spatial diffusion of aij generate sharp gradients in the orientation
tensor. This behaviour will be most pronounced for non-Brownian fibres since the
disordering term in (2.30) is proportional to Pe−1. As discussed in Batchelor (1959)
in the context of passive scalars and in Dubief et al. (2004a) in the context of flexible
polymer additives, advection in combination with low diffusivity is known to create
spatial scales of concentration variation much smaller than the flow dissipative scale.
This analogy to passive scalars suggests that full resolution of the fibre stresses
will require resolution of scales smaller than the Kolmogorov scale. This degree of
resolution is not possible with current computational resources.

Selected flow statistics as a function of grid resolution are presented in figure 2. The
r.m.s. of the velocity fluctuations and the mean fibre stresses are nearly identical, even
for the coarsest resolution (64 × 129 × 32) considered. The differences between the
results obtained using the 80 × 141 × 80 and 96 × 151 × 96 meshes are also modest.
Although this analysis does not rigorously demonstrate the grid independence of our
results, extrapolating from the modest variations over the limited range of resolutions
considered here we anticipate that results obtained using higher resolutions will be
not be qualitatively different. Based on these results, the coarse mesh appears to be
adequate for capturing qualitative trends and this resolution was used for a parametric
study of the effect of fibre concentration and rotary Péclet number on drag reduction.
Based on both the spectra and the statistics, the 80 × 141× 80 grid was chosen as the
best tradeoff between accuracy and computational cost.
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Figure 3. Effect of simulation domain size on selected flow statistics. (a) Two-point spanwise
correlation of the streamwise velocity fluctuation at y+ ≈ 10. (b) Mean fibre stresses as function
of wall-normal position. (c) Reynolds stress normalized using outer variables. (d) Root mean
square of velocity fluctuations scaled with outer variables.

3.3.2. Simulation domain size

The minimal channel was developed by Jimenez & Moin (1991) to study near-wall
turbulence and consists of the smallest periodic box in the streamwise and spanwise
direction that is required to obtain a self-sustaining turbulent flow. They showed that
the minimal channel accurately captures the near-wall statistics of turbulent channel
flow. For the case of a drag-reduced flow, the spatial scales of the turbulence are
increased and thus it is unclear if the box size associated with a Newtonian minimal
channel flow is adequate. The inability to capture these large scales has been shown
by Dubief et al. (2004b) to give rise to numerical artefacts in simulating drag-reduced
flows that disappear when using a large box.

We quantify the effect of box size on fibre and flow quantities shown in figure 3. The
two-point spanwise velocity correlation can be used to determine spatial structures
in the flow domain as discussed in Kim, Moin & Moser (1987). At the low
Reynolds numbers considered here, the mean streak spacing is approximately twice
the separation distance of the negative minimum of the spanwise correlation. At
y+ ≈ 10, considered here, the streaks are most pronounced. The Newtonian two-point
correlation shows a minimum at 50 wall units, corresponding to a streak spacing of
100, consistent with the results of Choi et al. (1994) and Jimenez & Moin (1991).
The minimal channel has a much stronger correlation than both the Newtonian
and double minimal channel flow, suggesting that the streaky structures are more
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κ Nodes affected Drag reduction (%)

1.0 ∼ 4–5% 22
10.0 ∼ 0.5–1.0% 18.5

100.0 ∼ 0.1% 14

Table 2. Effect of LAD coefficient, κ on drag reduction. Hybrid closure, Pe= 1000,
φ = 0.0075 and re = 100. Drag reduction is defined in § 4.1.

pronounced in the minimal channel than in either of the other cases. The turbulence
intensities, mean velocities and mean fibre stresses are all quantitatively similar in the
near-wall region where fibre interactions will be shown to be most important. We have
also examined the correlations presented in § 5 using both domains and have found
no significant differences. Based on these similarities and the large computational
costs associated with using the double channel, we have chosen to use the minimal
channel for this study and anticipate that the effects of using a significantly larger
domain will be modest.

3.3.3. Local artificial dissipation

An additional concern addressed by an analysis of the stress spectra is the impact
of the local dissipation scheme on the accuracy of the fibre stresses. Some amount
of either local or global artificial diffusion is necessary to obtain numerically stable
solutions as demonstrated by Sureshkumar et al. (1997) and Min et al. (2001) for
polymer-induced drag reduction. As previously discussed, we have used local artificial
diffusion in the treatment of the advection of the fibre orientation tensor; when the
determinant of the orientation tensor is negative, an extra artificial diffusion term
is added to the advection term. If this additional term is too large, the resulting
stresses will be too dispersed and the results inaccurate. Alternatively, as discussed
in Dubief et al. (2004a), the combination of the compact upwind scheme and LAD
can be considered to be a MILES (monotone integrated large eddy scheme) subgrid
scale model for polymer or fibre stress. As discussed in § 3.3.1, the fibre quantities are
characterized by small subgrid scale spatial variations and are therefore affected by
the choice of LAD coefficient.

We have completed a basic characterization of the effect of the LAD coefficient, κ ,
on the results as summarized in table 2 using the 64 × 129 × 32 mesh and fibres with
Pe= 1000 and nL3 = 18 using three different values of the coefficient differing by one
order of magnitude. Increasing the LAD coefficient decreases both the number of
nodes affected and the degree of drag reduction. In figure 4, we show that the r.m.s.
fluctuations in the stress are decreased as the LAD coefficient is increased, which is
consistent with the drag reduction behaviour reported in table 2. We will show that
large stress fluctuations are correlated with drag reduction in § 5. The power spectra of
fibre shear stress for the three values of the LAD coefficient considered are presented
in figure 4 and show little variation in the degree of decay, at least for this mesh and
parameter set. If the LAD coefficient is increased by too much, the diffusion term in
(3.3) becomes larger than the advection term and limits the time step. This behaviour
would manifest itself as artefacts at high wavenumbers in the power spectra. These
are not observed for the case of κ = 100. We found that the case of κ =1 eventually
became unstable for Pe= 1000 at long times and was not stable for non-Brownian
fibres. These results, combined with the fact that we see substantial drag reduction
over two orders of magnitude of the LAD coefficient, suggest that the qualitative
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Figure 4. Effect of variation of local artificial dissipation coefficient. (a) Power spectra in z
of fibre stress τ12 and (b) r.m.s. fluctuations of fibre stress component τ11 as function of LAD
coefficient. Spectra are normalized by their respective variances. Fibre parameters: Pe=100,
nL3 = 18. Grid resolution for stresses: 64 × 129 × 32.

results are not impacted by our choice of κ , but the variations suggest that lower
values are better. An LAD coefficient of 10 gave robust performance for all values
of the rotary Péclet number and aspect ratio, but this choice of coefficient was not
optimized. Since we lack exact solutions for the Fokker–Planck equation for a fully
coupled simulation in order to determine the impact on the numerical solution, we
used κ = 10 in order to obtain numerically stable solutions for the parameter range
of interest.

We have also considered the effect of the fibre properties on the number of nodes
affected by LAD. By reducing the aspect ratio, the fibre stresses are dispersed at the
smallest scales owing to the decreased ability of the fibres to align along streamlines.
As a result, less artificial diffusion is necessary. For an aspect ratio of 20, local
artificial diffusion is required at less than 0.001% of the nodes. As seen in figure 4,
the power spectrum of fibre stress for this case is not appreciably different than that
for fibres with an aspect ratio of 100 – a calculation where roughly 1000 times more
nodes are affected by LAD. In this case, a physical dissipation eliminates the need
for application of the artificial dissipation. Decreasing the rotary Péclet number also
decreases the degree of alignment and has an effect similar to the reduction of aspect
ratio.

3.3.4. Time averaging and initial conditions

Based on the results of the above studies, we present results using two grid
resolutions in the minimal channel flow. For our parametric study of the effect
of rheological parameters in § 6, we used the coarsest mesh described above. For
the calculation of turbulence statistics and our mechanistic studies we used the
80 × 141 × 80 mesh. In all simulations, the local artificial dissipation coefficient κ was
equal to 10. A statistically converged turbulent Newtonian flow with Re =7500 was
used for the initial velocity field in all simulations unless stated otherwise. An isotropic
initial fibre orientation was used (aij = δij /3). Because of this initial condition, the
flow undergoes a transient lasting approximately 25 time units. Upon reaching a
statistically steady state at approximately 50 time units, statistics were collected over
a minimum of 200 time units thereafter. We have used the IBOF closure for the
results presented in the following two sections and the hybrid closure for § 6 unless
otherwise noted.
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Figure 5. (a) Mean velocity and (b) r.m.s. velocity fluctuations scaled with friction velocity.
Fibre parameters: Pe= 1000, aspect ratio =100, nL3 = 18.

4. Turbulence statistics and structure
In this section, we present results for the case of Brownian fibres with Pe= 1000,

aspect ratio of 100 and concentration nL3 = 18, using the IBOF closure. For this case,
we achieved a drag reduction of 13.4%, defined relative to the Newtonian friction
velocity at the effective Reynolds number based on the total suspension viscosity:

%DR = 1 −
(

uF
τ

uN
τ,Reeff

)2

× 100, (4.1)

where the non-dimensional friction velocity for the fibre suspensions is defined using
the total average shear stress at the wall:

uF
τ

U
=

√
dU/dywall + τF

xy,wall

Re
(4.2)

and the effective Reynolds number, Reeff is defined using the effective viscosity of the
suspension at the wall:

µeff = 1 +
τF
xy,wall

dU/dywall

. (4.3)

All results presented using viscous units are scaled using µeff. This rescaling is equi-
valent to that used by Beris and coworkers (Sureshkumar et al. 1997; Dimitropoulos
et al. 1998) for polymeric drag reduction. For the Péclet number of 1000 considered
here, the effective Reynolds number is 6710.

4.1. Velocity statistics

The mean velocity and r.m.s. velocity fluctuations for the Newtonian and drag-reduced
cases are presented in figure 5. The fibre drag-reduced mean velocity profile is similar
to that observed in other drag-reduced flows (Choi et al. 1994; Sureshkumar et al.
1997): the slope of the log-law region is roughly the same as that of the Newtonian
case, but the intercept with the linear region (u+ = y+) is shifted upwards. This log-
law shift is indicative of a thickening of the viscous sublayer. The r.m.s. velocity
fluctuations are also qualitatively similar to those seen in polymeric simulations, with
an increase and outward shift of the streamwise intensity and a decrease in the
wall-normal and spanwise fluctuations.
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Figure 6. Stress balance for fibres. Fibre parameters: Pe= 1000, aspect ratio =100, nL3 = 18.

Figure 6 shows the contributions to the mean shear stress as a function of distance
from the wall. The stress balance is given by:

−uv

u2
τ

−
(

1 − y

h

)
+

1

u2
τRe

dU

dy
+

1

u2
τRe

τ
f
xy = 0. (4.4)

In (4.4), the Reynolds stresses are given by uv/u2
τ , the Newtonian viscous stress by

1/(u2
τRe)dU/dy and the mean fibre shear stress by 1/(u2

τRe)τ f
xy . Again, we see

qualitative agreement with results obtained using flexible polymer models. Reynolds
stresses are decreased relative to the Newtonian case throughout the entire channel.
This suggests that the fibres most strongly affect the flow in the region y+ < 100, or
the near-wall region where vortex structures are most pronounced. The average fibre
shear stresses show a maximum value at the wall and large shear stress in the buffer
region (y/h< 0.15).

The turbulent kinetic energy balance for the case of viscoelastic additives has been
formulated by Dimitropoulos et al. (2001). The turbulent kinetic energy is obtained
from the Reynolds stress budget:

∂uiuj

∂t
+ Uk

∂uiuj

∂t
= Pij + QN

ij + QF
ij + Dij + Πij + εN

ij + εF
ij . (4.5)

The turbulent kinetic energy is recovered by setting i = j , summing over the index i,
and dividing by 2. The terms in the balance are defined as follows:

Pij = −
(

uiuk

∂Uj

∂xk

+ ujuk

∂Ui

∂xk

)
(4.6)

is the production rate of Reynolds stress;

QN
ij = −∂uiujuk

∂xk

(4.7)

is the Newtonian transport of Reynolds stress;

Dij =
∂2(uiuj )

∂xk∂xk

(4.8)
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Figure 7. Turbulent kinetic energy profiles: comparison of Newtonian and fibre drag-reduced
profiles: dissipation, diffusion and production contributions. Fibre parameters: Pe= 1000,
aspect ratio =100, nL3 = 18.

is the diffusion of the Reynolds stress;

Πij = −
(

ui

∂p

∂xj

+ uj

∂p

∂xi

)
(4.9)

is the velocity–pressure gradient term; and

εN
ij = −2

∂ui

∂xk

∂uj

∂xk

(4.10)

is the direct viscous dissipation of the Reynolds stress. There are two additional terms
in the kinetic energy balance that result from the presence of fibre stresses:

QF
ij = −

∂
(
uiτ

f
jk + ujτ

f
ik

)
∂xk

, (4.11)

which is turbulent transport resulting from fluctuating fibre stress; and

εF
ij = −∂ui

∂xk

τ
f
jk +

∂uj

∂xk

τ
f
ik, (4.12)

which is an additional dissipation due to fluctuations in fibre stresses. As explained
by Dimitropoulos et al. (2001) this term can also be viewed as a coupling between
the velocity gradient and the fibre stress. As in the polymeric case, we have found
that these two contributions to the energy budget are small and define a total fibre
contribution to the budget as the sum of (4.11) and (4.12).

As seen in figure 7, the addition of fibres primarily affects the production, diffusion
and dissipation terms of the kinetic energy balance. Fibres appear to act in a manner
similar to flexible polymers, reducing the production of turbulent kinetic energy and
acting as an additional source of dissipation. There is also a shift of the maxima
and minima away from the wall which is consistent with the larger buffer layer
characteristic of a drag-reduced flow. The total fibre contribution is of the same order
as the velocity–pressure gradient and dissipation terms as seen in figure 8. In the case
of polymer-induced drag reduction, the additive contribution is a weak sink in most
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Figure 8. Turbulent kinetic energy profiles: comparison of Newtonian and fibre drag-reduced
profiles: transport, velocity-pressure gradient and fibre contributions. Fibre parameters:
Pe= 1000, aspect ratio =100, nL3 = 18.

of the channel except near the walls, where the polymeric stresses act as a source
term (Dimitropoulos et al. 2001). We see similar behaviour in the case of rigid fibres,
with a small positive contribution near the walls and a strong negative contribution
in the buffer region between y+ = 25 and y+ =50.

As in the polymer case, this positive contribution can be attributed to large
fluctuations in the streamwise velocity in the region between y+ = 10 and y+ = 25 that
act to stretch (in the case of flexible polymers) or more strongly orient (fibres) in the
x-direction than the mean shear in the viscous sublayer below y+ = 10. The resulting
maximum in stress around y+ � 20, corresponding to the location of the maximum
streamwise velocity fluctuations, is visible in the shapes of the mean stress profiles
for the IBOF closure in figure 22. For y+ < 20, both the turbulent transport and
dissipation terms related to the fibre stress positively contribute to the TKE budget.

4.2. Turbulence structure

The r.m.s. fluctuations of the streamwise vorticity for both the Newtonian and fibre
cases are shown in figure 9. As discussed in Kim et al. (1987) and Sureshkumar et al.
(1997), the minima and maxima of the profiles correspond to the average locations of
the edges and centres of the near-wall vortex structures. The decrease in the vorticity
fluctuations, as well as the broadening of the peak, suggests an increase in the size
and weakening of the near-wall vortex structures. Alternatively, the decrease in the
magnitude of the vorticity fluctuations suggests that the sweep motion associated with
the streamwise vortices in the fibre case is not as effective as that of the Newtonian
case in creating a high wall shear stress region as discussed by Kravchenko et al.
(1993). To illustrate more clearly the effect of the fibres on the near-wall vortices,
in figure 10 we show instantaneous visualizations of the vortices. The vortices are
visualized using iso-Q surfaces as discussed in Dubief & Delcayre (2000), where Q is
the second invariant of the velocity gradient tensor (Blackburn, Mansour & Cantwell
1996). For positive values of Q, the local rotation rate exceeds the strain rate and has
been shown to correlate with vortex structures by both Blackburn et al. (1996) and
Dubief & Delcayre (2000). We have chosen a value of Q =1.0 for the Newtonian flow
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Figure 9. Effect of fibres on r.m.s. of streamwise vorticity fluctuations. Fibre parameters:
Pe= 1000, nL3 = 18, re = 100.

(a) (b)

Figure 10. Instantaneous visualizations of near-wall vortex structures and contours of wall-
normal velocity. (a) Newtonian. (b) Fibres with Pe= 1000, aspect ratio =100, and nL3 =
18. Contours of velocity are equally spaced and defined from − 0.013Uc to 0.013Uc .

and Q =0.3 for the fibre flow, based on values chosen by Dubief & Lele (2001) for
visualization of a polymeric flow exhibiting comparable drag reduction. The vortices
are both larger and weaker, and the contours of the wall-normal velocity show an
increase in spacing in the fibre flow. The vortices are also spread out over a larger
region in the wall-normal direction relative to the Newtonian flow.

Since the near-wall vortices are affected by the fibres, we also expect the structure
of the near-wall streaks to be modified. We present instantaneous visualizations of
the streaks in figure 11 at y+ ≈ 10. These visualizations show that the alternating
regions of high- and low-speed flow are increased in scale by the addition of
fibres. Alternative evidence for this increase in streak spacing was shown using
the velocity autocorrelation in the previous section. The streak spacing is increased
from approximately 100 wall units in the Newtonian case to 150 wall units in the
fibre case using the effective friction velocity.
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Figure 11. Instantaneous visualizations of near-wall streaks. (a) Newtonian. (b) Fibres with
Pe= 1000, aspect ratio =100, and nL3 = 18. Note increase in scale of dark (low speed) and
white (high speed) regions in fibre case.

5. Mechanisms for drag reduction
In this section, we will use a combination of statistical analysis, flow visualizations

and numerical experiments to explain the process by which fibres cause turbulent drag
reduction. We begin by considering the PDFs of fibre stresses with various flow and
fibre quantities. Asymmetries in the PDFs indicate that correlations exist between the
fibre stress and the flow or fibre quantity, and the colour is indicative of the probability
with darker being more probable. We present the PDFs of the fibre normal stress
τ22 and various quantities in figure 12. Large values of the fibre normal stress are
correlated to low values of v′ and w′, suggesting that large stresses exist in stagnation
regions. The diagonal components of the velocity gradient tensor associated with
extension are also associated with large stresses, and for the component τ22, they are
correlated with an extensional flow with principal line stretching in the y-direction
(positive ∂v/∂y and negative ∂u/∂x and ∂w/∂z). An alternative way to express this
correlation is to consider the relationship between τ22 and the quantity %E defined as:

%E =
(EijEij )

0.5

(EijEij )0.5 + (ΩijΩij )0.5
, (5.1)

which is clearly a measure of the amount of pure straining motion in the flow.
This quantity is equal to 0.5 in simple shear and 1 in pure extension. As shown in
figure 12, large values of τ22 correlated with values of %E greater than 0.5. We see
similar correlations for the fibre normal stress τ33 (not shown). The fibre stress is
also correlated to values of the orientation tensor, with large values of τ22 correlated
with values of a22 approaching unity, suggesting that the large values of stress are
due to particles that are largely aligned with the y-axis. Large values of τ33 are
associated with values of a33 approaching unity, suggesting that the largest values of
this stress component are generated when fibres are almost completely aligned in the
z-direction. The PDFs also show that large stress events are generally rare events,
with the largest stresses occurring in only 0.001% of the observations.

The aforementioned observations regarding the relationships of the diagonal values
of the velocity gradient tensor and the amount of straining motion in the flow to
the fibre stress are strictly only valid for two-dimensional flows. To determine more
rigorously the relationship between fibre normal stress and the flow kinematics in the
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Figure 12. Correlations (PDF’s) of fibre normal stress, τ22, with various flow and fibre
quantities. Top row, left to right: τ22 vs. v’, τ22 vs. w’, τ22 vs. ∂u/∂x; middle row, left to right:
τ22 vs. ∂v/∂y,τ22 vs. ∂v/∂z, τ22 vs. %E; bottom row, left to right: τ22 vs. a11, τ22 vs. a22, τ22 vs.
a33.

three-dimensional flows of interest here, we adopt the analysis of Blackburn et al.
(1996). We consider a contour plot of fibre normal stress versus Q and R, where Q

and R are defined as

Q = 1
2

(
[tr(Aij )]

2 − tr
[
A2

ij

])
, (5.2)

R = −det(Aij ), (5.3)

where Aij is the velocity gradient tensor. The discriminant

D = (27/4)R2 + Q3 = 0 (5.4)

defines the transition between rotational and extensional flows. For flows with D < 0,
the flow is extensional. In figure 13 we show the contours of τ22 and τ33 versus Q and
R at y+ = 30. Large stresses are correlated with regions of negative Q and positive
R below the D = 0 line. To explain the importance of this region of Q-R space, we
consider the PDF of Q versus R at y+ = 30 for the fibre drag-reduced flow and
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Figure 13. Distributions of fibre stresses with respect to invariants of velocity gradient tensor
Q and R. Regions below the D =0 line (black cusp) are extensional flow. (a) τ22, (b) τ33.
(c) PDF of Q vs. R for fibre drag-reduced flow. (d) Contours of maximum real part of
eigenvalues of velocity gradient tensor.

a contour plot of the maximum of the real part of the eigenvalues of the velocity
gradient tensor as shown in figures 13(c) and 13(d), respectively. The highest fibre
stresses are associated with regions of Q-R space having the largest maximum real
part of the eigenvalue with a finite probability of occurring in the flow. These regions
in Q-R space are associated with the strongest extensional flows, and since the largest
stresses are clustered near the D = 0 line in the bottom right quadrant, these are
predominantly biaxial extensional flows. It is remarkable that the regions of large
fibre stress, and thus the primary action of the fibres on the flow, are associated
with Q < 0, R > 0 flows that have exceedingly low probability and are located in the
inter-vortex regions (Terrapon et al. 2004). These rare flow events appear to be critical
to the drag-reduction effectiveness of the fibres. Recent work performed at Stanford
has demonstrated that these flows are also important in the onset of polymer-induced
drag reduction; see Terrapon et al. (2004) for a full discussion of this topic.

To correlate fibre stresses to drag reduction, we consider the viscoelastic momentum
equation (2.32). Gradients in τ22 can generate a body force that, if opposite in sign to
v′, acts to decrease the fluctuations in this velocity component. A similar relationship
holds for τ33 and w′. Decreases in the fluctuations of v′ and w′ are one of the
indicators of drag reduction. We consider the scalar product of the divergence of the
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Figure 15. Single-point correlations vs. y+. (a) Fibre stress τ33 and various flow quantities.
(b) Fibre work and fluctuation velocities in specified direction.

stress and the relevant velocity component as a measure of these decelerations, with
a negative product being indicative of a drag reduction effect. We will refer to this
product as ‘fibre work’. In figure 14, it can be seen that the negative values of the
scalar product v′∂τ2j /∂xj are correlated with moderate values of τ22. We also show
in figure 14 a similar correlation for w′∂τ3j /∂xj and τ33. Since the body forces are
associated with spatial variations in stress, we expect the largest fibre body forces to
be associated with the edges of stress ‘hotspots’ and thus moderate stress values.

To determine the spatial dependence of the fibre normal stress correlations, we
have also considered single-point correlations of the fibre stresses and various flow
quantities as a function of the distance from the wall. We define the single-point
correlation as:

ρ =
AB

A′B ′ , (5.5)

where A and B are the two quantities of interest, the overbar denotes the mean,
and the prime denotes the r.m.s. of the quantity fluctuations. In figure 15, we present
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the single-point correlation ρ of the fibre stress τ33 and the fluctuation velocities and
velocity gradient components as well as the correlation of the fibre body force ∂τij /∂xj

with the fluctuation velocities. The single-point correlations of the fibre stress with the
flow quantities show that τ33 is correlated with flows having low v′ and w′ throughout
the near-wall region, as well as positive ∂w/∂z, negative ∂v/∂y and small ∂u/∂x. The
correlations are somewhat different for the viscous sublayer with τ33 being related to
positive ∂w/∂z, negative ∂u/∂x and small ∂v/∂y. We observe similar profiles for τ22.
These profiles show that the correlations observed in the scatter plots at y+ = 30 are
representative of the near-wall region in the flow.

With the exception of the the wall-normal velocity near the wall, the correlations
of the fibre body force and fluctuation velocity components show that the fibre body
forces are anti-correlated with velocity fluctuations. This result suggests that fibres
act to oppose velocity fluctuations in all directions, except to weakly accelerate wall-
normal fluctuations close to the wall (y+ < 5). However, in this region the wall-normal
velocity flucuations are nearly zero. These results differ slightly from what is seen in
the polymer case: the weak accelerations in the wall-normal velocity for y+ < 5 are
observed, but body forces due to polymer stress are also strongly positively correlated
with u′ in the region y+ < 20 and thus act to enhance fluctuations (Dubief et al. 2003)
in a way that fibres do not.

To more clearly illustrate the details of the fibre–flow interactions suggested by the
scatter plots and single-point correlations, we consider instantaneous visualizations
of the flow field and the correlated fibre quantities. In figure 16, the contours of the
fibre normal stress τ22 are plotted in the (y, z)-plane along with the projection of
the velocity vectors into this plane. The region of largest stress corresponds to the
stagnation region between vortices. In the adjacent figure, the contours of the fibre
body force are plotted with the velocity vectors, showing an opposition to the local
fluid motion. Lastly, we plot the eigenvector associated with the largest eigenvalue of
the orientation tensor in combination with stress contours. This vector corresponds
to the most probable direction of orientation. If equal to unity, the fibre is completely
aligned in that direction. Figure 16(c) shows projections of this vector in the (y, z)-
plane along with contours of the fibre stress τ22. Large vectors correspond to fibres
having complete alignment in the (y, z)-plane. As expected, the region of large τ22

corresponds to strong fibre alignment in the y-direction.
There are also correlations between the shear stresses τ13 and τ23 and decelerations

due to the fibre body force. We have also found correlations of these stresses with
extension (not shown) and in the case of τ13, ∂u/∂z. Visualizations of the flow field have
shown that shear stress ‘hotspots’ are also associated with intervortex regions. Large
values of τ23 result when fibres are confined strongly to the (y, z)-plane extensions,
but have alignments that are not colinear with the y- or z-axis. Regions of large τ13

are associated with similar events in the (x, z)-plane that arise from the impact of
downdrafts of fluid with the wall that give rise to large values of ∂u/∂z.

Based on these observations, in figure 17 we present a diagram of the mechanism
by which rigid fibres reduce turbulent drag. Instantaneous visualizations of the flow
field show that high stress regions are confined to intervortex regions and are most
pronounced in regions of intense vortex activity. These regions disappear when the
vortex structures are weakened. Since the high stresses are due to strong planar
alignment, we infer that the fibres are reoriented in the flow direction after the vortex
structures are weakened. Visualizations of the principal axis of the fibre orientation
tensor as a function of time (not shown) have demonstrated that this is the case.
Some high-stress regions persist even after the vortices are weakened owing to the
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Figure 16. (a) Contours of fibre stress τ22 and (b) fibre y-body force with (y, z)-plane
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Figure 17. Schematic of mechanism for fibre-induced drag reduction. I. Fibres align in
intervortex regions. II. Fibres generate large stresses and body forces that oppose vortex
motion. III. Vortex stuctures are dissipated and fibres realign in flow direction. IV. Vortex
structures re-emerge and cycle repeats.
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Figure 18. Time history of pressure drop through channel (circles) and maximum value of
fibre stress τ22 (solid line).

lag in this reorientation process. After the fibres reorient in the flow direction, the
reduction in local fibre stress allows the vortices to re-emerge and the turbulence is
sustained in a weakened state.

To illustrate these dynamics, in figure 18 we present the time history of the pressure
drop through the channel and the maximum value of the fibre stress τ22. The pressure
drop is directly related to the intensity of the near-wall vortices, with high pressure
drops being indicative of stronger vortex structures. The maximum value of the
fibre stress τ22 is a rough measure of alignment with large values being associated
with orientation in the (y, z)-plane. There is a qualitative correspondence between
the maxima and minima of the pressure drop and fibre stress histories, with ‘bursts’
of large fibre stress followed by reductions in pressure drop in accord with the
mechanism described above.

In order to verify that the drag reduction is due to the proposed mechanism,
we have performed a series of numerical experiments using the hybrid closure to
isolate the contributions to drag reduction due to various stress components. In these
experiments we have set certain contributions to the divergence of the extra stress
related to particular stress components to zero. In figure 19, we present pressure
drop versus time for various experiments. The simulations were performed using
a fibre aspect ratio of 100, a Péclet number of 1000 and nL3 = 18. Removing the
contributions of τ22 to the fibre y-body force and τ33 to the fibre z-body force reduced
the drag reduction from approximately 18% to 8%. By removing the contribution of
τ22 to the fibre y-body force and all of the fibre z-body force (i.e. ∂τ3j /∂xj = 0), we
obtained less than 1% drag reduction. This result suggests that the fibres reduce drag
only via these four stress components and by the mechanisms outlined above, with
roughly half of the drag reduction arising from the contributions of the two shear
stresses. Since it is more likely that fibres will align in the (y, z)-plane as opposed to
completely in the y- or z-directions, this result is not surprising.

6. Variation of rheological parameters
In this section, we consider the impact of variation of fibre parameters on the

drag reduction performance. For this work, we have chosen to use a coarse mesh
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Figure 19. Pressure drop versus time for numerical experiments. Contributions to fibre body
force removed as denoted in key.

resolution (64 × 129 × 32) as well as the computationally inexpensive hybrid closure
in order to simulate a larger range of parameter space. We will consider the effects of
suspension elasticity (rotary Péclet number), concentration, fibre aspect ratio, and the
closure approximation in the following subsections. In each of these cases, we have
used a Newtonian turbulent flow at a Reynolds number of 7500 as the initial flow for
the fibre simulation of interest unless otherwise noted. We will always compare drag
reductions for any given parameter set to a Newtonian flow at the effective Reynolds
number defined using the suspension viscosity at the wall.

6.1. Effect of rotary Péclet number or suspension elasticity

A central motivation for this work was to determine the importance and effect of
the suspension elasticity on drag reduction performance. We have focused on the
moderate to high Péclet region for several reasons. Most importantly, the rheological
model we employ is invalid for the low Péclet regime at the semi-dilute concentration
that we have considered. Additionally, the effective viscosity is strongly increased
at low Péclet numbers, making it difficult to maintain a sufficiently large effective
Reynolds number to sustain turbulence. By focusing on the range of Péclet between
50 and ∞, we are able to remain within the range of validity of our rheological
model and minimize effective Reynolds-number effects. The Newtonian turbulence
statistics at Reynolds numbers of 6100 and 7500 (the upper and lower bounds of our
effective Reynolds numbers) are not significantly different, nor do they introduce any
resolution issues.

We performed a series of simulations as described in table 3 in which the value of
Pe was varied while keeping all other parameters constant (nL3 = 18 and an aspect
ratio of 100). From these results, we observe that elasticity is not necessary for drag
reduction as non-Brownian fibres are drag reducing. Non-Brownian fibres also give
the most drag reduction suggesting that elasticity has a negative effect on drag-
reduction performance. This result agrees with the results obtained by den Toonder
et al. (1997) using a phenomenological model for elastic stresses.

Both the total wall shear stress (table 3) and the fibre contribution to the wall shear
stress is increased as the Péclet number is decreased (figure 20). The mean velocity
profiles also shown in figure 20 indicate that our effective viscosity scaling is correct
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Péclet µeff Reeff Drag reduction (%)

50 1.23 6100 11.7
100 1.15 6497 13

1000 1.06 7100 18.5
∞ 1.04 7200 19

Table 3. Effect of rotary Péclet number on drag reduction, nL3 = 18 and re =100. See text
for results of matched effective Reynolds test using Pe= 100.
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Figure 20. Effect of variation of suspension elasticity. (a) Viscous and fibre contributions to
shear stress for Pe= 50 and Pe= 1000; (b) mean velocity profiles for Pe= ∞ and Pe= 50;
(c) mean stress and r.m.s. stress fluctuations for Pe= 50 and Pe= 1000. All cases using hybrid
closure, re = 100 and nL3 = 18.

and that the effect of increasing the Péclet number is to increase the drag reduction
and to shift the log-law region upwards. To clarify the effect of elasticity, we also
consider the mean and r.m.s. fluctuations of the fibre normal stress τ11 in figure 20.
We see that mean stresses and the fluctuations in the case of Pe=50 are larger than
those in the Pe= 1000 case since the elastic stresses are now significant. However, the
fluctuations relative to the mean value are strongly decreased in the lower Péclet case
in the range of y+ = 10 to 50. We have observed similar trends for the fluctuations
of the other normal stress components. These observations are in agreement with the
results of Manhart (2003). These results suggest that the primary effect of increasing
the suspension elasticity is to increase the near-wall fibre extra shear stress, leading
to an increase in drag, but also to reduce the strength of extensional stress ‘bursts’
associated with drag reduction.

To confirm that the trend we have observed is not an artefact of the simultaneous
shift in Péclet and effective Reynolds numbers, we have completed a simulation in
which we attempted to match the effective Reynolds number at the wall for Pe= 1000
of 7100 for a Pe=100 suspension. This test required an increase of the Newtonian
base state Reynolds number to 8100. Using this value of Re, we obtained an effective
viscosity at the wall of 1.15, giving an effective Reynolds number of 7070 and a
drag reduction of 13.2%, which is less than that obtained using Pe=1000 fibres
at an approximately equal effective Reynolds number. This result suggests that the
decrease in drag reduction with decreased Péclet is not an artefact of the suspension
shear-thinning behaviour.

6.2. Effect of concentration

The effect of concentration is shown in table 4. For this series of simulations,
Pe= 1000 and the aspect ratio was 100. The primary effect of increasing the volume
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nL3 µeff Reeff Drag reduction (%)

5 1.01 7425 7.4
9 1.03 7301 13.2

18 1.06 7100 18.5
36 1.12 6707 26.2

Table 4. Effect of concentration on drag reduction. Pe= 1000 and re = 100.

re φ µeff Reeff Drag reduction (%)

30 0.08 1.34 5597 10.8
50 0.03 1.15 6521 11.7
75 0.0135 1.08 6944 15.1

100 0.0075 1.06 7100 18.5

Table 5. Effect of fibre aspect ratio on drag reduction. nL3 = 18 and Pe= 1000.

fraction is to increase the magnitude of the fibre extra stresses. We have shown in the
previous section that drag-reduction performance is closely correlated to resistance to
extensional motions, and for fibres the extensional viscosity is linearly proportional
to nL3. We do not see a linear increase in drag reduction behaviour, but this may
be due to the details of the resulting flow behaviour and fibre dynamics. We have
not increased the value of nL3 beyond 36 since the assumption nL3 � re, which is
the definition of the semi-dilute regime, is questionable. For larger values of nL3,
the resulting isotropic concentrated suspension would need to be modelled in a way
that would account for hindered fibre rotations. Both the resulting fibre dynamics
and stresses would be substantially different to those presented here (Doi & Edwards
1986).

We have also considered the effect of fibre–fibre interactions by completing a
simulation using the semidilute stress tensor (2.28 and 2.29) of Shaqfeh & Frederickson
(1990) that accounts for fibre–fibre interactions in the non-Brownian limit. The effect
of including hydrodynamic interactions in this manner for the non-Brownian case is
to increase the magnitude of the stress by roughly 30%, but not to modify the fibre
dynamics directly (other than through modified flow interactions). In this case, we
obtain a drag reduction of 20.3% and an effective wall viscosity of 1.04, giving an
effective Reynolds number of 7180. The use of the dilute stress scaling with semidilute
values of nL3 also gives statistical results (not shown) that are quantitatively similar
to those using the more rigorous semi-dilute stress scaling. We can conclude that the
effect of fibre–fibre interactions on the results presented here is minimal, at least in
the non-Brownian limit.

6.3. Effect of aspect ratio

We consider the effect of aspect ratio in table 5. Reducing the aspect ratio modifies
both the dynamic behaviour of the fibres and the fibre extra stress. We see that the
primary effect of decreasing the aspect ratio is an increase in the effective viscosity
and a reduction in the drag reduction effectiveness. This effect can be explained by
examining the behaviour of the fibres in the mean flow near the walls, which is a



312 J. Paschkewitz, Y. Dubief, C. Dimitropoulos, E. Shaqfeh and P. Moin

Closure µeff Reeff Drag reduction (%)

Hybrid 1.06 7100 15.8
IBOF 1.12 6710 13.4

Table 6. Effect of closure approximation on drag reduction. Pe= 1000, nL3 = 18, re = 100.

shear flow; as a result, the Jeffrey solution for the fibre dynamics is applicable. As
discussed in Petrich, Koch & Cohen (2000), the fibre extra shear stress scales as
nL3r−1

e . As the aspect ratio is decreased, the total extra shear stress at the wall is
increased, reducing the drag-reduction effectiveness. Additionally, as the aspect ratio
is decreased, extensional stresses are decreased (Brenner 1974) and this effect may
also be responsible for the lower levels of drag reduction observed.

The experimental study of Radin et al. (1975) observed that for a given
concentration, particles with an aspect ratio of less than 25 to 35 did not give drag
reduction and that increasing the aspect ratio improved drag reduction effectiveness.
In their experiments, the drag reductions were determined using pressure drop
measurements for flows at a constant Newtonian Reynolds number in a manner
analogous to the numerical experiment performed here. Our test shows that the drag
reduction is reduced when aspect ratio is decreased, though we still see a modest level
of drag reduction at re =30.

6.4. Effect of closure approximation

In order to make the numerical solution of the fibre dynamics tractable, we employed
a closure approximation for the fourth moment of the orientation vector, aijkl . For
this test, we have considered Pe= 1000 fibres with a concentration nL3 = 18 and
aspect ratio of 100, using the 80 × 141 × 80 mesh. The effective viscosities and drag
reductions are given in table 6.

As might be expected from the small difference in drag reductions, we see only
modest effects on the flow statistics and mechanistic correlations, as shown in figure 21.
The mean velocity profile and r.m.s. velocity fluctuations are qualitatively similar. The
single-point correlations for fibre stresses and flow quantities as well as the fibre work
correlations are also remarkably similar. Based on these results, we conclude that
the choice of closure approximation has no effect on the mechanism presented in the
previous section and only a modest effect on the drag-reduction behaviour.

However, there is a significant difference in the mean stress profiles, shown in
figure 22. The more accurate IBOF closure gives qualitatively different profiles for
both the mean stresses, especially for the first normal stress difference in the region
y+ < 20. To explain the origin of this effect, we have considered the stresses generated
in simple shear using the mean shear rate obtained in the turbulent channel-flow
simulations. We see that the resulting first normal stress and shear stress profiles are
nearly identical to the mean values at the wall in the turbulent channel flow. The
differences in the simple shear flow behaviour are due to the weakened flow alignment
predicted by the more accurate IBOF closure as compared to the hybrid closure; since
the fibres are on average less strongly oriented in the 1-direction the first normal stress
difference is decreased and the shear stress is increased. Since the mean stress profiles
begin to attain the same shape by y+ =20, this result suggests that the difference
in the mean stress profiles is primarily due to the difference in the shear-dominated
near-wall stress behaviour. The result also suggests that the near-wall stresses do not
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Figure 21. Effect of closure approximation on flow statistics. (a) Mean velocity and (b) r.m.s.
velocity fluctuations; (c) single-point correlations of fibre stress and velocity and (d) scalar
product of velocity and divergence of fibre stress or ‘fibre work’.
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Figure 22. Effect of closure approximation on fibre stress statistics. (a) Fibre mean stresses.
(b) Time evolution of fibre stresses in simple shear flow at mean shear rate obtained from
turbulent channel simulations. Note correspondence of steady shear stress values and mean
values of stress at wall in turbulence simulation.

have a significant effect on the drag reduction, and that modified dynamics of the
more accurate closure have only a modest impact on the fibre stresses in the buffer
layer since the mean stresses and the r.m.s. stress fluctuations (not shown) in that
region are qualitatively similar but slightly lower. Based on these observations, we
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conclude the drag reduction statistics and mechanisms we have presented here have
only a weak dependence on the choice of closure approximation.

7. Summary and discussion
We have presented a detailed investigation of drag reduction using rigid fibre

additives, modelled using the appropriate constitutive equation with two different
closure approximations. The central findings of the work are that elasticity has a
negative impact on drag-reduction effectiveness and that fibres create drag reduction
via an extensional mechanism in inter-vortex regions. Fibres strongly align in the
(y, z)-plane, generating large normal and shear stresses. These stresses create a force
opposite to Newtonian accelerations in the spanwise and wall-normal directions that
weakens the near-wall vortex structures giving drag reduction. Subsequent realignment
of the fibres in the flow direction allows the vortices to reform in the absence of fibre
stresses, allowing weakened turbulence to be sustained. As the amount of drag
reduction is increased, the near-wall vortices become weaker and move farther apart,
ultimately limiting the drag reduction effectiveness of rigid fibres since the mechanism
presented here requires the interaction of multiple vortices.

The experimental behaviour of drag-reducing fibre suspensions as discussed by
Radin et al. (1975) may be explained in part by our results. Specifically, these authors
found that, unlike the polymeric case, there is no onset phenomenon associated with
fibrous drag reduction. As explained by Sureshkumar et al. (1997), the existence of
a critical Weissenberg number for polymeric flows appears to be associated with
coil–stretch transition. In the case of fibres, stresses are immediately added as soon
as the fibres achieve alignment in extensional regions. This effect may very well give
rise to a prolonged transition regime, as discussed by Radin et al. (1975), instead of
the abrupt onset as seen with polymers.

We have made few comparisons to experimental data since there is little data
available for rigid rodlike additives at the relatively low Reynolds numbers and
concentrations we have considered; there is certainly none available with modern
flow instrumentation such as particle image velocimetry. The best comparison we
can make is with the data of Sasaki (1991), in which schizophyllan polysaccharide
gave a drag reduction of 6.5% at a Newtonian Reynolds number of 6800 in a 6 mm
inner diameter pipe. For the molecular weight and concentration reported for this
experiment, we estimate that nL3 ≈ 1.5 and the aspect ratio is 245. The Péclet number
based on the wall shear rate in this experiment was approximately 50. We found
in our study of concentration that fibres with Pe= 1000, re =100 and nL3 = 5 gave
7.4% drag reduction. Based on the trends presented in our rheological parameter
study, we expect that the calculated drag reduction would be slightly lower than the
experimental value.

Lastly, we motivated our work with the synergy effect observed using mixtures of
fibres and polymers to achieve drag reductions exceeding the sum of those obtained
using either additive alone. Since this effect has been observed using mixtures of rigid
polymers and flexible polymers, we believe that the model presented here will allow
us to investigate this phenomenon. We will consider drag reductions using mixtures
in an forthcoming work.
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